

Настройка HSRP

Топология

Таблица адресации

Устройство	Интерфейс	ІР-адрес	Маска подсети	Шлюз по умолчанию
R1	G0/1	192.168.1.1	255.255.255.0	—
	S0/0/0 (DCE)	10.1.1.1	255.255.255.252	—
R2_ФАМИЛИЯ	S0/0/0	10.1.1.2	255.255.255.252	—
	S0/0/1 (DCE)	10.2.2.2	255.255.255.252	—
	Lo1	209.165.X+200.225	255.255.255.224	—
R3	G0/1	192.168.1.3	255.255.255.0	—
	S0/0/1	10.2.2.1	255.255.255.252	—
S1	VLAN 1	192.168.1.11	255.255.255.0	192.168.1.1
S3	VLAN 1	192.168.1.13	255.255.255.0	192.168.1.3
PC-A	NIC	192.168.1.31	255.255.255.0	192.168.1.1
PC-C	NIC	192.168.1.33	255.255.255.0	192.168.1.3

Задачи

Часть 1. Построение сети и проверка соединения

Часть 2. Настройка обеспечения избыточности на первом хопе с помощью HSRP

Необходимые ресурсы

- 3 маршрутизатора (Cisco 1941 с операционной системой Cisco IOS версии 15.2(4)М3 (универсальный образ) или аналогичная модель)
- 2 коммутатора (Cisco 2960 с операционной системой Cisco IOS 15.0(2) (образ lanbasek9) или аналогичная модель)
- 2 компьютера (OC Windows с программой эмуляции терминала, например, Tera Term)
- Консольные кабели для настройки устройств Cisco IOS через консольные порты
- Кабели Ethernet и последовательные кабели согласно топологии

Часть 1: Построение сети и проверка связи

В первой части вам предстоит настроить топологию сети и выполнить базовую настройку, например IP-адреса интерфейсов, статическую маршрутизацию, доступ к устройствам и пароли.

Шаг 1: Создайте сеть согласно топологии.

Подключите устройства, как показано в топологии, и подсоедините необходимые кабели.

Шаг 2: Настройте узлы ПК.

Шаг 3: Выполните инициализацию и перезагрузку маршрутизатора и коммутаторов.

Шаг 4: Произведите базовую настройку маршрутизаторов.

а. Отключите поиск DNS.

- b. Присвойте имена устройствам в соответствии с топологией.
- с. Настройте IP-адреса для маршрутизаторов, указанных в таблице адресации.
- d. Установите тактовую частоту на **128000** для всех последовательных интерфейсов маршрутизатора DCE.
- е. Назначьте class в качестве зашифрованного пароля доступа к привилегированному режиму.
- f. Назначьте **cisco** в качестве пароля консоли и VTY и включите запрос пароля при подключении.
- g. Настройте logging synchronous, чтобы сообщения от консоли не могли прерывать ввод команд.
- h. Скопируйте текущую конфигурацию в файл загрузочной конфигурации.

Шаг 5: Настройте базовые параметры каждого коммутатора.

- а. Отключите поиск DNS.
- b. Присвойте имена устройствам в соответствии с топологией.
- с. Назначьте class в качестве зашифрованного пароля доступа к привилегированному режиму.
- d. Настройте IP-адреса для коммутаторов, указанных в таблице адресации.
- е. На каждом коммутаторе настройте шлюз по умолчанию.
- f. Назначьте cisco в качестве пароля консоли и VTY и включите запрос пароля при подключении.
- g. Настройте logging synchronous, чтобы сообщения от консоли не могли прерывать ввод команд.
- h. Скопируйте текущую конфигурацию в файл загрузочной конфигурации.

Шаг 6: Проверьте подключение между РС-А и РС-С.

Отправьте ping-запрос с компьютера PC-А на компьютер PC-С. Удалось липолучить ответ? __

Если команды ping завершились неудачно и связь установить не удалось, исправьте ошибки в основных настройках устройства.

Шаг 7: Настройте маршрутизацию.

- а. Настройте RIP версии 2 на всех маршрутизаторах. Добавьте в процесс RIP все сети, кроме 209.165.X+200.224/27.
- b. Настройте маршрут по умолчанию на маршрутизаторе R2_ФАМИЛИЯ с использованием Lo1 в качестве интерфейса выхода в сеть 209.165.X+200.224/27.
- с. На маршрутизаторе R2_ФАМИЛИЯ используйте следующие команды для перераспределения маршрута по умолчанию в процесс RIP.

R2_ФАМИЛИЯ(config) # router rip

 $R2_{\Phi AMUJUS}$ (config-router) # default-information originate

Шаг 8: Проверьте подключение.

а. Необходимо получить ответ на ping-запросы с компьютера PC-А от каждого интерфейса на маршрутизаторах R1, R2_ФАМИЛИЯ и R3, а также от компьютера PC-C. Удалось ли получить все ответы?

Если команды ping завершились неудачно и связь установить не удалось, исправьте ошибки в основных настройках устройства.

b. Необходимо получить ответ на ping-запросы с компьютера PC-C от каждого интерфейса на маршрутизаторах R1, R2_ФАМИЛИЯ и R3, а также от компьютера PC-A. Удалось ли получить все ответы? Если команды ping завершились неудачно и связь установить не удалось, исправьте ошибки в основных настройках устройства.

Часть 2: Настройка обеспечения избыточности на первом хопе с помощью HSRP

Даже если топология спроектирована с учетом избыточности (два маршрутизатора и два коммутатора в одной сети LAN), оба компьютера, PC-A и PC-C, необходимо настраивать с одним адресом шлюза. PC-A использует R1, а PC-C — R3. В случае сбоя на одном из этих маршрутизаторов или интерфейсов маршрутизаторов компьютер может потерять подключение к сети Интернет.

В части 2 вам предстоит изучить поведение сети до и после настройки протокола HSRP. Для этого вам понадобится определить путь, по которому проходят пакеты, чтобы достичь loopback-адрес на R2_ФАМИЛИЯ.

Шаг 1: Определите путь интернет-трафика для РС-А и РС-С.

а. В командной строке на PC-А введите команду **tracert** для loopback-адреса 209.165.X+200.225 на маршрутизаторе R2_ФАМИЛИЯ.

Какой путь прошли пакеты от РС-А до 209.165.Х+200.225?

b. В командной строке на PC-C введите команду **tracert** для loopback-адреса 209.165.X+200.225 на маршрутизаторе R2_ФАМИЛИЯ.

Какой путь прошли пакеты от РС-С до 209.165.Х+200.225?

Шаг 2: Запустите сеанс эхо-тестирования на РС-А и разорвите соединение между S1 и R1.

а. В командной строке на РС-А введите команду **ping** –t для адреса **209.165.X+200.225** на маршрутизаторе R2_ФАМИЛИЯ. Убедитесь, что окно командной строки открыто.

Примечание. Чтобы прервать отправку эхо-запросов, нажмите комбинацию клавиш **Ctrl+C** или закройте окно командной строки.

b. В процессе эхо-тестирования отсоедините кабель Ethernet от интерфейса F0/5 на S1. Отключение интерфейса F0/5 на S1 приведет к тому же результату.

Что произошло с трафиком эхо-запросов?

- с. Какими были бы результате при повторении шагов 2а и 2b на компьютере PC-C и коммутаторе S3?
- d. Повторно подсоедините кабели Ethernet к интерфейсу F0/5 или включите интерфейс F0/5 на S1 и S3, соответственно. Повторно отправьте эхо-запросы на 209.165.X+200.225 с компьютеров PC-A и PC-C, чтобы убедиться в том, что подключение восстановлено.

Шаг 3: Настройте HSRP на R1 и R3.

В этом шаге вам предстоит настроить HSRP и изменить адрес шлюза по умолчанию на компьютерах PC-A, PC-C, S1 и коммутаторе S2 на виртуальный IP-адрес для HSRP. R1 назначается активным маршрутизатором с помощью команды приоритета HSRP.

а. Настройте протокол HSRP на маршрутизаторе R1.

```
R1(config)# interface g0/1
R1(config-if)# standby version 2
R1(config-if)# standby 1 ip 192.168.1.254
R1(config-if)# standby 1 priority 150
```

R1(config-if)# standby 1 preempt

- b. Настройте протокол HSRP на маршрутизаторе R3.
 - R3(config) # interface g0/1
 - R3(config-if) # **standby version 2**
 - R3(config-if) # standby 1 ip 192.168.1.254
- с. Проверьте HSRP, выполнив команду show standby на R1 и R3.

Используя указанные выходные данные, ответьте на следующие вопросы:

Какой маршрутизатор является активным?

Какой МАС-адрес используется для виртуального IP-адреса?___

Какой IP-адрес и приоритет используются для резервного маршрутизатора?

- d. Используйте команду **show standby brief** на R1 и R3, чтобы просмотреть сводку состояния HSRP. Выходные данные приведены ниже.
- е. Измените адрес шлюза по умолчанию для PC-A, PC-C, S1 и S3. Какой адрес следует использовать?
- f. Проверьте новые настройки. Отправьте эхо-запрос с PC-A и с PC-C наloopback-адрес маршрутизатора R2_ФАМИЛИЯ. Успешно ли выполнены эхо-запросы?

Шаг 4: Запустите сеанс эхо-тестирования на РС-А и разорвите соединение с коммутатором, подключенным к активному маршрутизатору HSRP (R1).

- а. В командной строке на РС-А введите команду **ping –t** для адреса 209.165.X+200.225 на маршрутизаторе R2. Убедитесь, что окно командной строки открыто.
- b. Во время отправки эхо-запроса отсоедините кабель Ethernet от интерфейса F0/5 на коммутаторе S1 или выключите интерфейс F0/5.

Что произошло с трафиком эхо-запросов?

Шаг 5: Проверьте настройки HSRP на маршрутизаторах R1 и R3.

a. Выполните команду show standby brief на маршрутизаторах R1 и R3.

Какой маршрутизатор является активным?

Повторно подключите кабель, соединяющий коммутатор и маршрутизатор, или включите интерфейс F0/5. Какой маршрутизатор теперь является активным? Поясните ответ.

Шаг 6: Изменение приоритетов HSRP.

- а. Измените приоритет HSRP на 200 на маршрутизаторе R3. Какой маршрутизатор является активным?
- b. Выполните команду, чтобы сделать активным маршрутизатор R3 без изменения приоритета. Какую команду вы использовали?

с. Используйте команду show, чтобы убедиться, что R3 является активным маршрутизатором.

Вопросы для защиты теоретической части (главы 9, 10, 16)

1. Для чего необходимо резервирование маршрутизаторов? Опишите преимущества протокола HSRP.

 Какие роли исполняют активный, резервный и виртуальный маршрутизатор? Каким образом происходит процесс выбора активного маршрутизатора?

3. Что происходит в случае сбоя активного маршрутизатора? Что произойдет, если в сети появится маршрутизатор с более высоким приоритетом?

4. Что необходимо сделать для возобновления процесса выбора активного маршрутизатора? Опишите состояния протокола HSRP.

5. В каком случае сработает приоритетное вытеснение маршрутизатора? Опишите принцип работы сетевой атаке DDoS.

6. Дайте характеристику компонентам ААА. Как будет вести себя коммутатор в результате успешной атаки на таблицу САМ?

7. Опишите принцип работы атаки с двойным тегированием. В чем заключается опасность ARP атак?

8. В чем заключается потенциальная опасность использование протокола CDP? Как поступит маршрутизатор, если на нем не настроен маршрут по умолчанию и пакет должен быть перенаправлен в сеть назначения, которая не указана в его таблице маршрутизации?

9. Какие данные могут быть получены с помощью протокола CDP? Каким образом можно провести атаку STP протокола?

10. В чем заключается опасность DHCP-спуфинга? Опишите метод сетевой атаки VLAN Hopping.